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Activation by Nonlinear Oscillations and 
Solitonic Excitations 

Werner Ebeling 1 and Martin Jenssen 2 

Local excitations in molecular systems are studied taking into account the 
influence of soft impurities. The dynamics of activation processes (high-energy 
events) due to nonlinear mechanisms is studied. The following examples of 
classical macroscopic systems with strong nonlinear interaction are investigated: 
1D Toda chains, 1D Morse rings, and 3D systems of hard spheres including 
impurities. It is shown that solitonlike excitations may lead to the concentration 
of energy at definite sites (weak springs or soft spheres). The accumulation of 
energy is mainly due to soliton-fusion effects. In thermal equilibrium an 
optimum temperature exists, where the thermally averaged potential energy is 
preferably partitioned to the soft springs embedded into a hard-spring solvent. 
Further, we show that the effect of thermal energy localization and the 
temperature dependence also persists for solutions of soft spheres in hard-sphere 
solvents. 
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1. I N T R O D U C T I O N  

This  w o r k  is d e v o t e d  to the  s tudy  of  a c t i v a t i o n  processes  in classical  

sys tems cons i s t ing  o f  a f ini te  n u m b e r  of  mo lecu l e s  wi th  s t r o n g  n o n l i n e a r  

in te rac t ions .  W e  will  s tudy  the  effect of  s t r o n g  a n h a r m o n i c  forces  first for  

the  s imple  case o f  T o d a  i n t e r ac t i ons  

V ( r )  = b [ e x p ( - b r )  - 1 ] + ar (1.1) 
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These forces are constant for strong expansions beyond the rest positions 
and exponentially hard for strong compressions with respect to the 
equilibrium position. The results are extended to hard core forces which 
are zero for expansions and infinitely hard for compressions and finally to 
more realistic molecular forces approximated by Morse potentials: 

V ( r )  = D [ e x p ( - a r )  - 1] 2 (1.2) 

In mechanical equilibrium a classical system of interacting masses possesses 
only potential energy. By collisions we may accelerate one or a few masses 
and introduce in this way kinetic energy which will run in the form of an 
excitation through the system. In a thermal regime we may excite even a 
whole spectrum of excitations. In the case of a purely linear coupling we 
know all about these excitations: We will observe sinusoidal oscillations 
and waves, acoustical and optical phonons, etc. Eventually local excita- 
tions, i.e., wave packets, will be observed, which, however, show strong 
dispersion. In other words, local excitations are not stable in linear systems. 
On the other hand, one knows from the theory of infinite chains of 
molecules with very special interactions, such as, e.g., Toda interactions, 
about the possibility of solitons, i.e., absolutely stable local excitations. 

The strong interest in local excitation is especially inspired by the 
theory of reaction rates. (1-3~ An idea expressed by several authors is that 
catalytic activity in complex reaction systems is supported by nonlinear 
excitations capable or localizing energy at special reaction sites. The 
problem of the elementary excitations in biomolecules (4-8) and of their 
possible role with respect to functional relevant activation processes in 
enzyme molecules ~176 or strings of nuclei acids (11"12t has been studied by 
several workers. 

This work aims to give a contribution toward a general theory of non- 
linear energy localization mechanisms suitable for the assistance of local 
activation processes. We will restrict ourselves to the investigation of 
simple classical models of molecular systems, such as one-dimensional 
chains and rings of masses which are connected to their adjacent neighbors 
by nonlinear springs, as well as three-dimensional systems of hard and soft 
balls. 

In the following part of the paper we shall give a brief description of 
the basic dynamical effect--the soliton fusion--which might be responsable 
for an energy localization at a definite site. In the subsequent section we 
will examine the influence of this dynamical effect on special sites. In 
thermal equilibrium there is an optimum temperature where energy is 
mainly partitioned to soft sites, which may lead a considerable reaction 
rate enhancement. Finally, we will turn to a hypothetical example for non- 
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linear energy localization and recurrence under nonequilibrium conditions. 
A simple model of global enzyme structure will be used in order to demon- 
strate the maintenance and efficiency of the effect for an inhomogeneous 
chain of molecular masses interacting via Morse potentials with realistic 
parameters in the presence of frictional forces. 

2. THE EFFECT OF NONUNIFORMIT IES ON SOLITONIC 
EXCITATIONS 

A wide class of intermolecular interactions is usually modeled by 
Morse potentials, Lennard-Jones potentials, or other empirical potentials 
consisting of a steep repulsive and a long-range attractive part. The 
so-called Toda potentiaP 13) proves to be a standard model for this kind of 
interaction, which allows an analytical treatment of the equations of 
motion in the 1D case. Now we consider the dynamics of a nonuniform 
chain of masses at position y ,  which are connected to their nearest 
neighbors by Toda springs with the nonlinear spring constant b n. The 
Hamiltonian reads 

M=y(p  a ) 
\2m+-~  { e x p [ - b , ( y , + l -  y , ) ] -  l } + a ( y , + l -  y,) (2..1) 

For  an infinite uniform chain [b,  = b Vn ( -  oo, + oo)] Toda found the 
soliton {.3) 

e x p [ - b ( y .  + 1 - Y~)] - 1 = sinh 2 ~ sech 2 z b -  sinh Zt (2.2) 

with the energy 

2a 
E ' = 7  (sinh Z cosh Z - Z )  (2.3) 

The soliton corresponds to a local compression of the lattice with spatial 
"width" Z-1. The quantity 

= sinh Z (2.4) 

defines the characteristic excitation time of a spring during soliton passage. 
The energy of a large-energy-containing and therefore extremely localized 
soliton satisfying the condition 

sinh2 Z 
- - >  1 (2.5) 

Z 
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reads according to (2.3) and (2.5) 

2a 2 
E s ~ -b- sinh Z (2.6) 

Now we consider a system consisting of two semi-infinite Toda chains 
of different spring parameters, bn = b Vn < 0 and bn = bn Vn >~ 0 with bo < b. 
Although this nonuniform chain does not admit exact soliton solutions, the 
solution (2.2) can be conceived as a right-running soliton on the hard part  
with b far to the left of the interface, where it behaves as in a uniform chain. 
In the vicinity of the interface, however, it will be scattered and evolve into 
reflected and transmitted waves, including both solitons and radia- 
tion. (14'15) In particular we observe sufficiently far to the right on the soft 
part  the formation of a transmitted soliton (15) 

exp - [ -  bo(yn +1 - Yn)] - 1 = sinh 2 Z0 sech2 Zo n - sinh Zo t + 6 

;go = ~2 sinh 2 Z (2.7) sinh z 
O 

The last expression relates the transmitted soliton to the incident one, 6 
denotes a constant phase shift that occurs due to the scattering process. In 
the case of strong localization of both incident and transmitted solitons we 
find from (2.7) and (2.6) for the energy Eo of the latter 

2 a  ~ E s E;  ~ ~-  sinh 2 )~ 

Hence the energy of the incident soliton is almost completely transferred to 
the transmitted one, i.e., scattering losses are less important  for energetic 
solutions. From (2.2) and (2.7) we find according to (2.4) for the 
characteristic times r and ~o of the incident and the transmitted soliton, 
respectively, the simple relationship 

ro b 
- -  = - -  ( 2 . 8 )  

z b o 

The existence of different time scales of soliton motion can be used to 
generate high-energy events by soliton fusion, which was demonstrated 
numerically. (15) The energy of two strongly localized solitons of equal 
magnitude impinging on the interface will be contained afterward mainly in 
one soliton transmitted to the soft part  by a time less than % on the hard 
chain. 
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17 / 
Fig. 1. Superposition of two solitons in a single soft spring (n = 0) embedded in a hard Toda 
lattice (n= 1 ..... 29) with parameters m=2, a= 10 2, b= 102, b/bo= 10. The solitons (each of 
energy E= 1) are separated from each other by a time 8.47 on the hard lattice initially. The 
potential energy of springs is plotted versus time t and spring number n. 

N o w  we consider a single soft spring embedded in a surrounding of an 
otherwise uniform hard chain [(2.1) with bn = n Vn r 0 and b 0 < b]  instead 
of the interface between two extended chains of different stiffness. It turns 
out that  this sole soft spring is able to trap and superpose nar row solitons 
impinging from both  directions within a characteristic excitation time r0, 
as demonst ra ted  in Fig. 1. We only note that this kind of soliton fusion 
leads to considerable concentrat ions of potential energy at the soft 
spring. (15) Interpret ing a compression of this spring up to a certain critical 
value as an activation process, we have a novel mechanism to accumulate  
the energy of nonequil ibrium excitations at a selected degree of freedom to 
be activated. 

3. S O L I T O N - A S S I S T E D  A C T I V A T I O N  P R O C E S S E S  

In the last section the fusion of solitons was introduced as a special 
nonequil ibrium effect which is suited to supported local activation 
processes. N o w  we will show that  this mechanism may  lead to an activa- 
tion enhancement  which occurs even in thermal equilibrium due to the 
fusion of thermally generated solitons. 

We consider a nonuni form Toda  chain (2.1) of N particles which is 
fixed at the left-hand side (Yo -- 0) and introduce a pressure p acting on the 
right end particle. A m o n g  the N springs may  be No soft springs with spring 
constant  bo. After changing to spring coordinates tn = y ,  - Yn- 1, the exact 
classical part i t ion function can be calculated as for the uniform Toda  
chain. (13) Using the nota t ions/~ = 1/kB T, 7 = p/kBT, we obtain 
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Z(fl, 7)= dp, dr. 
n = l  - - o o  c ~  

fla a (a+y)/b 

[ 1  (~a~(~a~ -(p~+'el/b~ ~ o ~ ) ]  N~ 
x ~oeXP\boJ\bo/ F2 (3.1) 

The partition function splits into separate factors corresponding to hard 
and soft springs. The internal energy of the chain reads 

E =  -0-~ ln  Z(fi, y )=~f l  + (N-No) (u )+No(uo)  

with 

a o p_  oIl ( 0) 
(3.2) 

expressing the average potential energies of a hard and a soft spring, 
respectively. 

Now we elucidate soliton-induced effects in the thermal behavior of a 
nonuniform Toda chain. Because solitons are destroyed at open ends, we 
are led to fix the total length of the chain, which can be calculated from the 
partition function (3.1). Assuming further a vanishing number of soft 
springs embedded in a chain of hard springs, i.e., a strongly "diluted 
solution" t /= N/No = 0, whereas N--* o0 and No --, ~ ,  one obtains for the 
dimensionless pressure (16/ 

By the help of (3.2) and (3.3) we can now calculate the average potential 
energies of the springs. Especially in the high-temperature limit the ratio of 
the average potential energies of a soft and hard spring yields 

(Uo) b 
(u)  ~ o  bo (3.4) 
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Fig. 2. Average potential energies of soft springs (upper curve) and hard springs (low curve) 
in a Toda lattice with fixed average length as a function of the logarithm of the reciprocal tem- 
perature (b/bo = 10). The spring energies are given in units of k s T for a vanishing fraction of 
soft springs (t/= 0). In an intermediate temperature range a localization of thermal energy 
takes place at the soft springs. The dashed curve shows the potential energy of a soft Toda 
molecule. (b0 = 1000) imbedded into a hard-sphere solvent (7 = 1). 

The potential energies in units of thermal energy are presented in Fig. 2 as 
a function of temperature. In the high-temperature limit thermal energy is 
partitioned mainly to the kinetic degrees of freedom. Whereas the ratio of 
potential energies of soft and hard springs tends up to the maximum value 
defined by (3.4), the ratio of potential and kinetic energy tends to zero. 
with tempera ture  approaching infinity. Hence only a vanishing part  of 
thermal energy is located at soft springs. At low temperatures the equi- 
partition theorem is valid and thermal energy is shared equally among all 
microscopic degrees of freedom. Between these limits there is an opt imum 
temperature where the potential energy of soft springs may reach several 
kB T/2. 

The pecularities in thermal behavior of a nonuniform Toda chain can 
be attributed to the properties of solitons, which were outlined 
previouslyJ 16~ At high temperatures the dynamics is completely determined 
by extremely narrow and hence noninteracting solitons. In the intermediate 
temperature range that is characterized by a localization of thermal energy 
at the soft spring, thermal solitons become broader and their average 
distance in time is no longer greater than the characteristic time z o of the 
soft spring. Thus a substantial superposition of incident solitons as 
presented in Fig. 1 takes place in the soft spring, giving rise to the elevation 
of average potential energy for intermediate temperatures. At low 
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temperatures, however, strong interaction is no longer confined to the soft 
spring and individual solitons are destroyed. 

So far we have considered only 1D chains. Now we will give a brief 
discussion of 3D systems of hard and soft spheres, proving that corre- 
sponding activation enhancement may occur also in higher dimensions. We 
consider first again the nonuniform Toda chain under a pressure p acting 
on the right end particle, but using now another notation. Introducing 
7--p/kB T, we can represent the average energy at soft sites in the form 

( Uo ) = S dro u(ro) exp[ - fiu(r o) -TVo] (3.5) 
S dro e x p [ - ~ u ( r 0 ) - 7 V o ]  

where v 0 = r 0 is the "volume" of the soft sites and 7 is given by Eq. (3.3). 
Our new representation (3.5) may be interpreted as an average carried out 
over an isobaric Gibbs ensemble. This analogy enables us to transfer the 
results obtained for Toda chains to other diluted one-dimensional systems 
with known pressure as well as to diluted higher-dimensional systems. Let 
us consider now as one example a diluted solution of soft spheres with the 
volume Vo = 47cR3/3 imbedded into a hard sphere system. The pressure is 
then given in Percus-Yevick approximation by (2) 

= p(1 + t /+ t/2)/(1 - t/) 3 (3.6) 

where p is the density of the hard spheres and t /= pro the relative packing. 
Introducing (3.6) into (3.5), a numerical evaluation shows that the average 
energy (u0)  again shows a maximum in dependence on the temperature if 
the pressure y is not too high (Fig. 2). In other words, the basic effect that 
soft sites (molecules) imbedded into a stiff solvent are able to collimate the 
energy of local excitations seems to persist in three dimensions. We hope 
to be able to confirm this effect by 2D and 3D simulations. 

4. A M O D E L  OF A C T I V A T I O N  P R O C E S S E S  IN E N Z Y M E  
M O L E C U L E S  

In this section we will give a short discussion of a model of global 
enzyme structure which was developed together with Romanovskii, (1~ We 
will follow the hypothesis that solitary-wave dynamics could be involved in 
the primary processes of enzyme catalysis. It is well known that the active 
site of an enzyme occupies only a few percent of the whole volume of the 
macromolecule. On the other hand, the intramolecular motion of the whole 
structure is likely to influence the processes at the active site during 
catalysis. In the following we will treat the enzyme macromolecule in a sire- 
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plified way as a mechanical system which possesses one selected degree of 
freedom strongly coupled to catalytic activity. As a crude model for the 
enzyme c~-chymotrypsin we chose (m) a ring of 12 slightly different masses 
connected by Morse springs: 

V(G) = D ~ E e x p ( - a ~ G  ) - 1] 2 (4.1) 

The first term of a Taylor expansion yields the harmonic approximation: 

V(G ) D -2r2 k n  2 
n u n  n ~ - T r  n (4.2) 

The equations of motion in the presence of external forces F,(t) and 
friction 7,, read as follows: 

1: n =- F~ - -  V n _  1 

15, = -TnV, + m~-~[ V ' ( r , ) ]  + F,(t) (4.3) 

n = 0 ,  1 ..... 11 

Here the dots and primes stand for the derivatives with respect to time t 
and coordinates respectively; and r ,  and v n denote the deviation of the nth 
spring from its rest position and the velocity of the nth mass mn, 
respectively. The masses m n = 2083 a.u. _ 10 % model the single domains of 
~-chymotrypsin (17) which are connected by hydrogen bonds, Dn = 17 k J/mole, 
an = 50 nm -1 (n = 1,..., 11), and enclosed by a hydrophobic core, y, = 0 
(n = 1,..., 10). The spring n = 0 with ko = k/lO and ao = a/50 stands for a 
weak elastic interaction between two of the domains between which the 
active site is located. The motion of the soft spring may be exposed to the 
solvent, 7 u = y 0 = 2 . 8 6 x  1011 sec -1. A compression of this soft or active 
spring enhances the probability for catalytic reactions significantly. (18'1~ 

Now we will show the results of numerical integration of (4.1)-(4.3). 
First we considered the action of an initial impact Fn(t) on the active 
spring modeling the release of vibrational energy due to the absorption 
of substrate molecules. (I~ For  this we applied a rectangular pulse 
Fu(t) = -Fo(t) to the soft spring which was adjusted to provide an initial 
energy of 65 k J/mole to the system. As can be seen from Fig. 3, this adsorp- 
tion pulse leads to an initial compression of the active spring with a maxi- 
mum potential energy of more than half of the total initial energy of the 
macromolecule. This first compression relaxes, thereby inducing the forma- 
tion of two strongly localized pulses traveling in opposite directions away 
from the active spring. These pulses are not actual solitons in a strict sense 
because they possess a finite lifetime, which is, however, very large 
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Fig. 3. Relaxation of compressional energy V(ro) of the active spring versus time t for (a) the 
nonlinear and (b) the linear model after an initial compression of the active spring due to an 
adsorption event. 

compared to one period around the (undamped) Morse ring. They exhibit 
to our observation the same qualitative interaction behavior both in 
uniform and perturbed chains as the Toda solitons considered above. After 
a time approximately identical to the natural period of the active spring 
we observe a first recurrence of the energy due to a fusion of both 
quasisolitons after one rotation on the ring. This scenario is repeated until 
the pulses are damped out due to the solvent friction. It is worth noting 
that the dissipation of energy proceeds much more slowly than for an 
"isolated" active spring which is not coupled to the rest of the chain. Hence 
the nonreactive part of the macromolecule retards the relaxation of vibra- 
tional energy at the active site. For  comparison we integrated (4.3) in the 
harmonic approximation (4.2) using the same parameters as before, so 
neglecting the nonlinearity of interaction for demonstration purposes. As 
can be seen from Fig. 3b, the initial compression localizes less than a 
quarter of the total energy at the soft spring. The wave packets made up 
of the few normal-mode frequencies of the system can be considered 
moving in opposite directions along the ring as in the nonlinear case. In 
contradiction to the latter case, these wave packets are not stable and we 
observe an incomplete superposition of the normal waves after a period. 
The motion of the soft spring is essentially determined by the lowest mode 
slightly "modulated" by the overtones. Due to the dispersion especially the 
high-frequency modes do .not contribute effectively to a localization of 
vibrational energy at the active spring in the linear model. 
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We considered also the effect of an initial rectangular pulse put to a 
fourth spring, i.e., to a hard positioned asymmetrically with respect to the 
active one. This pulse was chosen to provide an initial total energy of 
65 k J/mole again. In the linear case the active spring was never excited 
significantly, whereas in the nonlinear model the energy was always trans- 
ferred to the active spring, where it repeatedly returned also after a certain 
time when the motion proves to be almost harmonic. This effect of non- 
linear energy transfer may be of relevance for the catalytic utilization of 
external energy sources, collisions with clusters of water molecules, etc. 

In this section we developed some ideas of how soliton like dynamics 
could support reaction processes under nonequilibrium conditions. In 
particular we outlined that the nonlinearities occurring in biological 
macromolecules are sufficient to provide a localization and repeated 
recurrence of vibrational energy at a functionally relevant part. 

5. C O N C L U S I O N S  

The present work is closely related to the classical computer experi- 
ment by Fermi, Pasta, and Ulam which observed already that when an 
anharmonic lattice was disturbed from equilibrium, the system exhibited no 
tendency to redistribute its energy among the normal modes. Later this 
effect was understood on the basis of relatively stable solitonlike excita- 
tions. We have shown here that the dynamical effect of soliton fusion 
provides an efficient mechanism for localization of both thermal and non- 
thermal energy at activation sites that are part of a nonlinear molecular 
chain. This holds true even for mixtures of hard and soft spheres and for 
inhomogeneous Morse rings with interaction parameters applying to 
biological macromolecules. In thermal equilibrium we proved the existence 
of an optimum temperature where energy is preferably partioned to a few 
soft springs embedded into a nonuniform Toda chain consisting mainly of 
hard springs. Here we restricted ourselves to the investigation of the 
energetic activation of the soft springs. For  a more accurate treatment of 
transition processes, e.g., chemical reactions, the simple TST model may be 
applied. (2) The effect of thermal energy localization persists also for solu- 
tions of soft spheres in hard-sphere solvents. (2) The corresponding theory 
was based on thermodynamic grounds only, since a statistical description 
of the underlying dynamics of the three-dimensional many-body system 
by nonlinear elementary excitations seems to be impossible. A further 
investigation of thermal energy localization for three-dimensional systems 
could be interest to the reaction theory of solutions. 
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